django

This talk is about Django, my favourite web framework. I’'m Emil Stenstréom, | work for
a company called Valtech, and we are looking for developers. Please e-mail
emil.stenstrom@valtech.se if you are interested.

@ ¢ spring

EpiSERVER Ie Powe'ec‘by Microsoft® .
FD%.Of'ﬁce SharePoint
Server 2007
o000
o=

oo ~

F SiteVision
Microsoft - ﬂﬂ
.n_G't sl

creating communities

| have tried these tools, but none of them really made me love working with them.

= =

function()

This is how Django works, and this is really all you need to know about Django’s inner
workings. The blue boxes are what things are called, the purple ones is a try to be
more concrete in what they mean. Lets go through each box.

=

ARegExp$S

from django.conf.urls.defaults import *

urlpatterns = patterns(",
(r'Aarticles/2003/$', 'news.views.special_2003'),
(r'rarticles/(\d{4})/$"', 'news.views.year_archive'),
(r'Aarticles/(\d{4})/(\d{2})/$', 'news.views.month_archive'),
(r'Aarticles/(\d{4})/(\d{2})/(\d+)/$', 'news.views.article_detail'),
)

This is a full url configuration file. To the left you have a list of regular expressions, to
the right you have a list of functions to run when an URL matches that regexp. Every
pair of parentesis inside the regexps are variables that are sent as arguments to the
view.

function()

from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<html><body>It is now %s.</body></htm|>" % now
return HttpResponse(html)

And this is a view. But you can’t have html in the code like that can you?

=

<html>

from django.shortcuts import render_to_response
import datetime

def current_datetime(request):
now = datetime.datetime.now()
return render_to_response(“time.htm!”, {
‘now’: now

)

Better send your information to a template like this. You can send any number of
variables, of any type, to your template.

<html>

Template

<h1>{{ section.title }}</h1>
{% for story in story_list %}
<h2>

{{ story.headline|upper }}

</h2>
<p>{{ story.tease |truncatewords:“6" }}</p>
{% endfor %}

And this is how the template looks. Use dot-syntax to access properties, and for-loops
to access things in lists. Pipe chars, |, can be used for filter variables (in this case
"upper” is a filter) and django comes with a very good list of default filters.

<h1>Frasha nyheter</h1>

<h2>Nya iGlasses slappta</h2>
<p>Riktigt haftiga glasdgon slapptes igar av...</p>

<h2>Coolaste hundleksaken</h2>
<p>Har din hund ocksa Apple-feber?...</p>

And this is the rendered HTML. But we have missed one step now, haven’t we? The
model...

Model

MysQL *

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

manage.py syncdb

The model! This is what you need to do to store information about a person. Just list
the fields you want, there are many field types to choose from. When you’re done, go
to the console and type the line at the bottom. Voila, your model is ready to use...

<~

from django.shortcuts import render_to_response
from myproject.meeting.models import Meeting

def meeting_list(request):
meeting_list = Meeting.objects.all()
return render_to_response(“meeting list.html”,
{‘meeting_list": meeting_list}

)

This is how you use your model. The all() function is just one of many ways to access
model objects.

10

<~

from django.shortcuts import render_to_response
from mysite.meeting.models import Meeting

def meeting_detail(request, name):
meeting = Meeting.objects.get(name=name)
return render_to_response(“meeting detail.htm
{'meeting’: meeting}

n
1%

)

Another way is get(), which fetches a specific field for your based on the parameters
you send to it. The name parameter comes from the url config. Remember the
parentesis?

11

= =

function()

So that’s it, now you know everything you need to know about django’s functionallity.
But now we’ve only talked about output. How do you insert data into the database
then?

{6 00 Site administration | Django site admin

@ http://127.0.0.1:8000/admin/ @ A(Q- Google)

Django administration Welcome, jacob. Documentation / Change password / Log out

Site administration

Recent Actions

Groups &k Add Change My Actions
Users & Add Change None available
Sites 4 Add hang

Authors 4 Add Change

Books &b Add Change

Publishers 4 Add Change

By using Djangos automatic interface. It looks at your model and just renders an
interface based on that information. This interface is also highly configurable. Click on
Books.

Select baok to change | Django site admin

@ http://localhost:8000/ad min/ch6/book/

Django administration

Home > Books

Select book to change
Book

The Django Book

Pro CSS Techniques

The Little Schemer

Applied Cryptography

Design Patterns

5 books

(o] Q- Google

Welcome, jacob. Documentation f Change password / Log out

Clicked "the Django Book”.

14

/6 060 Change book | Django site admin

@ http://127.0.0.1:8000 /admin /ch6 / book/ 4/ Q@ (@~ Google)

Django administration Welcome, jacob. Documentation / Change password / Log out
Home » Books » T :
Change book | History J
Title: The Diango Book
Publisher: Apress B
Publication 2007-04-01 | Today | [
date; -
Authors: Daniel Friedman +
Matthias Felleisen
Erich Camma
Bruce Schneier
Adrian Holovaty
Jacob Kaplan-Moss
T t Mac, t
Delete ("Save and add another) (‘Save and continue editing) (Save

Based on the model the admin also knows how to render the controls for that field.
Nice, isn’t it? But what if you don’t want to use the admin, for instance if you need a

comment field?

<form>

Form

from django import forms

class ContactForm(forms.Form):
subject = forms.CharField(max_length=100)
message = forms.CharField()
sender = forms.EmailField()
cc_myself = forms.BooleanField(required=False)

So this is how you make a form in django. Looks pretty similar to how you create a
model right?

16

<~

MysQL *

from django.forms import ModelForm

<form>

class ArticleForm(ModelForm):
class Meta:
model = Article

Well, a little too similar. So this is how you can automatically generate it from a model
if you want to.

17

<~

def contact(request):
if request.method == 'POST’:
form = ContactForm(request.POST)
if form.is_valid():
Process the data in form.cleaned_data
return HttpResponseRedirect('/thanks/’)
else:
form = ContactForm()
return render_to_response('contact.html’, { form': form })

And this is how you process that form in a view. The # is a comment, and also the
place where you decide what you want to do with your data. Send an e-mail? Save it
to the database?

18

<html>

Template

<form action="/contact/" method="POST">
{{ form.as_p }}
<input type="submit" value="Submit" />
</form>

This is how you render a form. The as_p function renders it as <p> tags. You can also
choose to render it as a unordered list (as_ul) or as a table (as_table). How bad is the
code generated then?

19

Not bad at all. It has all the little quicks interface developers want it to have. You like

it?

<form action="/contact/" method="POST">
<p><label for="id_subject">Subject:</label>
<input id="id_subject" type="text" name="subject"
maxlength="100" /></p>
<p><label for="id_message">Message:</label>
<input type="text" name="message" id="id_message" /></p>

<input type="submit" value="Submit" />
</form>

20

'Vll_-Lm > @ python’

Yes, it does perform. Don’t be afraid of python, your database is much slower than
python is. So you should instead concentrate in letting the database work as little as
possible. How?

>>>>

MIDDLEWARE_CLASSES = (
'django.middleware.cache.UpdateCacheMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

)

By using caching. Python has four levels of caching, and the first one is on the site
level. These two lines in the settings file enables cache on all pages without get and
post parameters.

22

Cache

—

@cache_page(60 * 15)
def slashdot_this(request):

If that’s too rough you can also cache on the view level. The cache_page thingie takes
the number of seconds to cache.

Cache

—

{% load cache %}
{% cache 500 sidebar %}

{% endcache %}

And if that’s too rough you can do it on the template level instead. The string after
the number of seconds is just a name that identifies this cached block.

24

Cache

from django.core.cache import cache
cache.set('my_key', 'hello, world!', 30)
cache.get('my key")

Or if you really like the gory details, you can go right at the core of things. Django
gives you getters and setters directly at the cache that you can use from your views.
All of these caching backends goes against the same backend, a setting. Supported
backends are Memcached, File system, Database, Memory and a couple of strange
ones.

| could talk all night about the different parts of django, but | won’t. Just trust me that
they are as good as what you’ve seen this far. So now you probably wonder, what
sites use Django?

26

REN/4E9 The Washington Post

Pownce

Send stuff to your friends.

Z BOKTRAVEN valtech

The last two onces are my own projects. Boktraven is not done yet, and I’'m building
an intranet for Valtech that’s obviously not accessible from the outside. You would
have liked that wouldn’t you? Over all, | would like more big sites to use Django, it
would make it easier to convince clients to use it. So what do | think about Django,
what are my opinions about it?

Well, it’s uncomfortable at first.

28

'TASY B EASY
HEESEQHEESE

BERTED PROCESS CHEESE SPRER [FHRZED PROCESS CHEESE SPREAD TEURIZED PROCESS CHEESE SPEY

\merican

But then you realize that it’s actually quite easy to use.

29

But the real reason for using Django is because it’s fun. | haven’t felt that about any
other product or framework I've tried. This is the reason why I’'m holding this
presentation tonight. | would never have held it about Sharepoint.

30

One of the best things about Django is its documentation. It rocks. Really.

31

Also, it’s much more hip than Rails.

32

Hosting is still a problem. Although the few hosts that support it does it well
(Compare with the sea view below).

33

Django is also under active development, and new features are based on real needs,
not a need to write a “complete framework”. A framework that concentrates on
solving your problems quickly, that’s Django.

34

Don’t clap at me, clap at Django.

I’m Emil Stenstrém, | blog at http://friendlybit.com

Photo credit:
http://www.flickr.com/photos/ron2/215766370/
http://flickr.com/photos/xiaming/50391986/
http://flickr.com/photos/dharmasphere/32874943/
http://www.flickr.com/photos/stephanieasher/2391340330/
http://www.flickr.com/photos/orianomada/2244093711/
http://www.flickr.com/photos/karoluslinus/2181209112/
http://www.flickr.com/photos/timsnell/513350599/

35

